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ABSTRACT

A highly efficient and practical synthesis of 4,4-Disubstituted-2-Imidazolidinones utilizing a “self-reproduction of the center of chirality” strategy
is described.

We have recently disclosed a series of 4,4-disubstituted-2-
imidazolidinones as potent NK1 antagonists.1 To perform a
comparative analysis of our most promising compounds in
this class, multigram quantities of several analogues were
needed in optically pure form. To meet these material
requirements, a thorough investigation of various synthetic
methods toward an optically pure imidazolidinone core was
undertaken.

Initially, a practical racemic synthesis of the imidazolidi-
none ring was developed (Scheme 1). Alkylation ofR-hy-
droxy acetophenone by treatment of the triflate of 3,5-
bis(trifluoromethyl)benzyl alcohol in the presence of 2,6-
di-tert-butyl-4-methyl pyridine was followed by subsequent
hydantoin formation under standard conditions. Reduction
with lithium aluminum hydride/aluminum trichloride pro-
vided the desired imidazolidinone.

Numerous methods to resolve the hydantoin intermediate
or imidazolidinone product were surveyed, and a practical
chiral chromatographic method was discovered allowing
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Scheme 1. Racemic Synthesis of 4,4-Disubstituted
2-Imidazolidinonesa

a Reagents and conditions: (a) 3,5-bis(trifluoromethyl)benzyl
alcohol, 2,6-di-tert-butyl-4-methyl-pyridine, trifluoromethane sul-
fonic anhydride, CH2Cl2; (b) potassium cyanide, ammonium
carbonate, 50% aqueous ethanol; (c) lithium aluminum hydride,
aluminum trichloride, THF.
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access to multigram quantities of optically pure imidazoli-
dinone 4. Further structural changes around this lead
compound resulted in targets that could be separated via
chiral chromatography with varying degrees of success. To
circumvent chromatographic resolution procedures, a general
and practical asymmetric synthesis of 4,4-disubstituted
2-imidazolidinones was sought.

Our approach (Scheme 2) is based on the “self reproduc-
tion of the center of chirality” method developed by D.
Seebach.2 The cyclic urea,5, would be made from hydantoin
intermediate6, which can readily be prepared from theR,R-
disubstituted phenylglycine amino acid7. This amino acid
would result from hydrolytic opening of the imidazolidinone
8. Diastereoselective alkylation of the imidazolidinone9
should occur with bottom face approach of the incoming aryl
bromomethyl ether. This bond disconnection represents an
efficient way of preparing the minimal pharmacophoric
elements (highlighted below) of phenylglycinol-based NK1

antagonists3 on fully substituted systems with the overall
absolute stereochemistry originating from phenylglycine.

The initial synthetic implementation of our strategy utilized
the N-benzoyl-protected imidazolidinone;4 however, we
encountered problems with the extreme conditions needed
to hydrolyze the benzoyl group of the dialkylatedN-benzoyl-
imidazolidinones.5,6 To circumvent this problematic cleavage,
we sought to explore the“unprotected” imidazolidinone13
(Scheme 3).7,8

Thus, treatment of phenylglycine methyl ester11 with an
aqueoussolution of methylamine provided the amide12with
minimal epimerization.9 Treatment of the amino amide12
with pivalaldehyde in pentane with azeotropic removal of
water followed by treatment with hydrochloric acid installs
the temporarytert-butyl stereocenter (trans/cis ratio of 6:1).
Neutralization of the amine hydrochloride salt with potassium
carbonate and isolation via aqueous workup provided the
crystalline free base imidazolidinone13. Recrystallization
from MTBE removed the minor cis isomer to provide pure
13 in >99% ee as one diastereomer by1HNMR with
excellent recovery.

Imidazolidinone13 was alkylated with1410 using LDA
/THF11 to provide theR,R-disubstituted phenylglycine de-
rivative 15 in >95:5 diastereomeric ratio with excellent
isolated yields in the range of 70-75%.12

Various bromomethyl ethers containing substitution at the
benzylic center were also employed for structure-activity
relationship investigation purposes (data not shown). The
most biologically interesting of these targets contained a
chiral benzylic methyl group.13 Preparation of the required
bromomethyl ether in quantity (Scheme 4) required a large
supply of (R)-R-methyl 3,5-bis(trifluoromethyl)benzyl alco-
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Scheme 2. Retrosynthetic Analysis: Asymmetric Route Scheme 3. Alkylation of Imidazolidinone13
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hol (17). CBS reduction14 of 3,5-bis(trifluoromethyl)-ac-
etophenone (16) was optimized to provide over 300 g of
17. Treatment of a melt of paraformaldehyde and chiral
alcohol17 with gaseous hydrobromic acid for 2 h followed
by anhydrous extractive workup with hexane and distillation
gave the bromomethyl ether18 in >90% yield on scales of
>100 g.15

Imidazolidinone13 was alkylated with18 using LDA/
THF to afford theR,R-disubstituted phenylglycine derivative
19 in >95:5 diastereomeric ratio with isolated yields in the
range of 70-75%. Recrystallization of19 from pentane
provided material that is diastereomerically and enantio-
merically pure in 55% isolated yield. The absolute config-
uration of 19 was confirmed by X-ray crystallographic
analysis (Figure 1).

Subsequent treatment of19with methanolic/aqueous HCl
gave the desired amino amide20 in >95% yield with no
need for chromatographic purification. The resulting amino
amide was then treated with chlorosulfonylisocyanate fol-
lowed by 25% aqueous HCl/dioxane to afford the desired
crystalline hydantoin. The hydantoin was reduced to the

required cyclic urea as before using LAH/AlCl3. Recrystal-
lization from hot MTBE provided the final product in>99%
ee as a single diastereomer.

Thus, the employment of crystalline imidazolidinone13
resulted in the discovery of a highly efficient route to
optically pure 4,4-disubstituted 2-imidazolidinones. The
yields for the seven-step synthesis are generally very good;
the transformations can be carried out on very large scale,
and little chromatography is needed to provide 4,4-disub-
stituted 2-imidazolidinone NK1 antagonists in optically pure
form. A procedure for the amidation of stereochemically
labile phenylglycine esters with minimal racemization has
been established. Furthermore, the utility of employing
substituted benzylbromomethyl ether electrophiles to ste-
reoselectively install the NK1 pharmacophore in hindered
disubstituted systems has been discovered. The generality
of this key step with other core systems to give rise to novel
NK1 antagonists is the focus of current work and will be the
subject of future publications.
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Scheme 4. Asymmetric Synthesis of 4,4-Disubstituted
2-Imidazolidinones

a Isolated yields of19 in >95:5 diastereomeric ratio after column
chromatography.

Figure 1. ORTEP representation of the crystal structure of19.
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